
 

 

    

 

                            

12 
 

A
T

U
- 

A
F

JI
M

S
, 
V

o
lu

m
e:

 1
, 
Is

su
e:

 1
, 
 J

A
N

. 
2
0
2
5
 ©

 2
0
2
5
 A

F
JI

M
S

, 
A

ll
 R

ig
h
ts

 R
es

er
v
ed

  

 

 

 

 

 

Al-Furat Journal of Innovations in Management 

Sciences 

 
ATU- AFJIMS, Volume: 1, Issue: 1, JAN. 2025 

 

 

 
 

Variable Selection in Poisson Regression Model using Golden Jackal 

Optimization Algorithm 

Didar Abdal Wafaa Rashid Aziz1, Mohammad Mahmood Faqe Hussein2, Zakariya Yahya Algamal3 

1 College of Administration and Economics, University of Sulaimani- Sulaimani city – Iraq, 
didar.rashid@univsul.edu.iq 

2 Statistics and informatics department - College of Administration and Economics -University of Sulaimani- Sulaimani 

city – Iraq, Mohammad.faqe@univsul.edu.iq 
3 College of Computer Sciences and Mathematics, University of Mosul, zakariya.algamal@uomosul.edu.iq 

 

Abstract. The Poisson regression model is one of the most important logarithmic linear 

regression models, and it is the tool through which the response variable is modeled when the values 

of that variable are in the form of countable values. Like other regression models, the model may 

contain many explantory variables, which negatively affects the accuracy of the model and its 

simplicity in interpreting the results. This study aims to use the Golden Jackal algorithm and compare 

it with other methods in selecting variables in the Poisson regression model using simulation and 

real data. The Monte-Carlo method was used in the simulation to generate data that follow the 

Poisson regression model according to different factors such as sample size and the number of 

explantory variables. Two aspects of the performance evaluation of the methods used were relied 

upon: the first is to evaluate the accuracy of prediction and the second is to evaluate the selection of 

variables as a criterion for comparison. The simulation results showed the superiority of the Golden 

Jackal algorithm compared to other variable selection methods. In addition, the application was 

carried out on real data collected from patients with chronic kidney disease who are treated with 

continuous hemodialysis, and the patients' condition was diagnosed by specialist doctors in 

cooperation with Ibn Sina Teaching Hospital - Artificial Kidney Unit. 

Keywords: Golden Jackal algorithm, Poisson regression, Variable selection, Simulation 

experiment description 
 

 

 

1. INTRODUCTION 

Regression analysis is a statistical tool that builds a statistical model to estimate the relationship 

between one variable called the dependent variable and another variable or several other variables 

called explanatory variables, so that a statistical equation is produced that explains the relationship 

between the variables. Regression analysis with its various models has occupied a distinguished 

position in the trends of many statisticians, and has received its abundant share through various 

statistical writings, and its role has become very important in the applications of various life sciences, 

especially in the economic field, which has taken it upon itself to adopt regression models primarily 

mailto:zakariya.algamal@uomosul.edu.iq
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to be the most prominent means of practical support for economic theories, in addition to other 

sciences such as health, life, social, and others (Al-Rawi, 1978) . 

The classical linear regression model assumes that the response variable depends on a set of 

explanatory variables, where these variables can be continuous variables or countable variables. 

However, when the response variable is in the form of countable variables such as the number of 

patients, the assumptions of linear regression will not be achieved. Therefore, the Poisson regression 

model was proposed as one of the regression models that are compatible with such cases. 

Selecting variables in count data using the Poisson regression model is one of the challenges in 

applying the Poisson regression model when the number of explanatory variables is large, as 

traditional methods for selecting subsets such as forward selection, backward elimination, and 

stepwise selection have become poor in performing their function as they have become more 

expensive to calculate. In addition, information criteria for selecting variables such as the Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC) have become impractical 

in selecting explanatory variables due to their computational complexity, which grows exponentially 

with the increase in the number of explanatory variables (Algamal, 2015) . 

The current study dealt with the Poisson Regression Model (PRM), which is one of the most 

popular models among models that have a countable response variable. It was first described by 

researchers Nelder and Wedderburn (1972), as a special case of generalized linear models (GLMs). 

To determine the importance of the methodology compared to other traditional methods, the model 

used will be subjected to and then the criteria for evaluating the significance of the results of each 

method will be employed. This research aims to employ the Golden Jackal algorithm and compare it 

with other methods for selecting explanatory variables in the Poisson regression model using 

simulation and real data, by highlighting a number of factors that may affect the quality of these 

methods and the necessity of using them under certain conditions rather than other methods .  

2. POISSON REGRESSION MODEL 

The Poisson regression model is one of the most important logarithmic linear regression 

models, and it is the tool through which the dependent variable is modeled when the values of that 

variable are in the form of countable values. Like other regression models, the model may contain 

many independent variables, which negatively affects the accuracy of the model and its simplicity in 

interpreting the results. This model assumes that the dependent variable yi is a response variable that 
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follows the Poisson distribution with a parameter of  𝜇 , and the random errors in the model follow 

the Poisson distribution with a parameter of 𝜇. (Hossain And Ahmed, (2012)) Mansson and Kubria 

(2012) and is defined according to the probability function defined by the following formula . 

yi = eXβ+U                                                         … (1) 

It can also be expressed in matrix form as follows: 

yi = Exp(Xβ + U )                                          … (2) 

Since: 

yi: Dependent variable vector ,  

Xn×1: Independent variables matrix with degree β(n×(p+1)) 

β: Parameter vector with degree U((p+1)×1) 

U: Random errors vector with degree n(n×1)  

n: Sample size 

P : Number of independent variables (explanatory).  
 

In order to estimate the parameters of the Poisson regression model using the probability methods, 

we will resort to maximizing the observations of the distribution of the dependent variable yi . If the 

dependent variable yi  follows the Poisson distribution with a parameter of (𝜇𝑖) then the distribution 

function is as in formula (1) and is defined in advance as follows: 

f(yi/μi) =
e−μi μi

yi

yi!
 

By maximizing the observations of the distribution of the dependent variable yi  given in the formula 

above, the maximum likelihood function is as follows: 

L(y1, y2, … , yn; μi) =
Exp{−∑ μi

n
i=1 } μ

i

∑ yn
i=1 i

∏ yi
n
i=1 !

                           … (3) 

Taking the natural logarithm of the maximum likelihood function for the above observations, we get: 

LogL(yi|xi, β ) = − ∑μi

n

i=1

+ ∑ yi

n

i=1

(Log{μi}) − Log {∏yi

n

i=1

!}   … (4) 

Based on the second assumption of the basic assumptions of the Poisson regression model μi =

Exp{Xi
Tβ}, this assumption is replaced by function (4) above as follows: 

LogL(𝐲𝐢|xi, 𝛃 ) = − ∑(Exp{xi
T𝛃})

n

i=1

+ ∑yi

n

i=1

(Log {Exp{xi
T𝛃}}) − Log {∏yi

n

i=1

!}     
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= ∑(yixi
T𝛃 − EXP(xi

T𝛃) − logyi!)                         … (5)

n

i=1

 

 

3. 3 GOLDEN JACKAL OPTIMISATION ALGORITHME 

 Most of the optimization algorithms inspired by nature are based on swarm intelligence, and 

swarm intelligence-based algorithms constitute a large part of contemporary algorithms, and these 

algorithms have become widely used in classification, optimization, image processing, business 

intelligence, as well as in machine learning and artificial intelligence. The Golden Jackal 

Optimization Algorithm (GJOA) is one of the latest swarm intelligence methods and the most 

powerful optimization algorithms that was first developed in 2022 by Chopra and Ansari (Chopra & 

Mohsin Ansari, 2022). 
 

 The golden jackal algorithm has been proven to be effective and perform well in solving various 

optimization problems. The golden jackal algorithm was developed by simulating its hunting 

behavior. The golden jackal is a medium-sized terrestrial predator that lives in North and East Africa, 

the Middle East, Europe, Southeast Asia, and Central Asia. The golden jackal has a body length of 

about 70 to 85 cm, a standing height of about 40 cm, and a tail length of about 25 cm. The fur is 

usually coarse with pale golden brown to yellow tips and varies with region and season. The small 

body and long legs allow the golden jackal to run long distances to catch prey. The initial stages of 

hunting a golden jackal pair are as follows : 

1- Search and advance towards the prey 

2- Encircle the prey and disturb it until it stops moving 

3- Pounce on the prey 

The hunting strategy of the golden jackal pair is mathematically designed and the mathematical 

model is improved. The algorithm shows the sub-section of the golden jackal algorithm 

development process and to improve the algorithm as a simple and homogeneous method, the 

search space is formulated like many other algorithms. 

The golden jackal algorithm starts by generating the initial solution uniformly over the search space 

as follows: 

Y0 = Ymin + rand(Ymax − Ymin)                           …………(6) 

Where: 
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y_max: The upper limit of the variables. 

y_min: The lower limit of the variables, which is a random variable that follows the regular position 

within the interval 0 and 1. Thus, we obtain the initial matrix of the search space values, which is as 

follows: 

Prey = [

Y1,1 Y1,2 ⋯ Y1,d

Y2,1 Y2,1 ⋯ Y2,d

⋮ ⋮ ⋮ ⋮
Yn,1 Yn,2 ⋯ Yn,d

]   …………(7)      

Where: 

𝑦𝑖𝑗 : refers to the dimension j of the prey i . 

n: total of prey and variables . 

d: refers to the position of the prey for the parameters. 

Then the fitness function (objective function) is applied to each row of the matrix that represents 

the prey shown in equation (7) as follows: 

FOA =

[
 
 
 
 f
(Y1,1; Y1,2;⋯ ; Y1,d)

f(Y2,1; Y2,1;⋯ ; Y2,d)

⋮
f(Yn,1; Yn,2; ⋯ ; Yn,d)]

 
 
 
 

  …………(8) 

Where 𝐹𝑂𝐴 is the matrix of fitness function values for each prey and 𝑦𝑖𝑗  shows the value of dimension 

j for prey i . 

n: number of prey . 

The algorithm method depends on two stages: the exploration stage and the exploitation stage . 

First: The exploration or search phase for prey 

A strategy was proposed to explore the golden jackal algorithm. The nature of the jackal is to know 

how to perceive the prey and follow it intermittently. The prey cannot be caught easily, so the jackal 

waits and searches for another prey. Note that the hunting is led by the male jackal and followed by 

the female jackal . 

                       Y1(t) = YM(t) − E ⋅ |YM(t) − rl ⋅ Prey(t)|                             ……… (9)                   

 

               Y2(t) = YFM(t) − E ⋅ |YFM(t) − rl ⋅ Prey(t)|                         …… . . (10) 

Where: 



 

 

    

 

                            

17 
 

A
T

U
- 

A
F

JI
M

S
, 
V

o
lu

m
e:

 1
, 
Is

su
e:

 1
, 
 J

A
N

. 
2
0
2
5
 ©

 2
0
2
5
 A

F
JI

M
S

, 
A

ll
 R

ig
h
ts

 R
es

er
v
ed

  

 

 

 

 

 

Al-Furat Journal of Innovations in Management 

Sciences 

 
ATU- AFJIMS, Volume: 1, Issue: 1, JAN. 2025 

 

 

 
t : Current iteration . 

Prey (t): Position vector of the prey . 

YM(t), YFM(t): Indicates the position of the male and female jackal. 

Y1(t), Y2(t) ∶The prey corresponds to the male and female jackal positions updated by the expression 

Y1(t), Y2(t) 

E: Evasion energy of the prey and is calculated as follows: 

E = E1 × E0                                 …………(11) 

Where: 

E1: refers to the decreasing energy of the prey . 

E0: refers to the initial state of its energy 

E0 = 2 × r − 1                            ……… . . (12) 

Where r is a random number between   (0,1 .)  

E1 = c1 × (1 − (
t

T
))                 …………… . (13) 

(T) denotes the maximum number of iterations and C1 denotes a constant value equal to 1.5. E_1 is 

linearly reduced from 1.5 to 0.   |y(t) − r| . Prey(t) in Equation (11) and (12) calculates the 

distance between the jackal and the prey. This distance between the jackal and the prey is either 

subtracted or added. The current position of the jackal depends on evading the energy of the prey. r 

in Equation (11) is a parabola and in Equation (12) is a vector of random numbers based on the 

(Légène) distribution representing the motion of a doubled Légène r and Prey the motion of the prey. 

It is calculated using 

r1 = 0.05 × LF(y)                          ………… . (14) 

It is a tax flight function which is calculated using 

LF(y) = 0.01 ×
μ × σ

(|v
(

1

β
)
|)

; σ = (
Γ(1 + β) × sin (

πβ
2

)

Γ (
1 + β

2
) × β × (2

1−1

2 )

)

1

β

          …… (15) 

Where: 

μ and v: random values between (0 and 1) . 
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β: is a virtual constant set to 1.5 . 

The golden jackal algorithm is updated by taking the average of equation (4) and equivalent   (5 .)  

 

Y(t + 1) =
Y1(t) + Y2(t)

2
                                      …………(16) 

The exploitation stage or encirclement and attack on the prey when the prey is harassed by the 

jackal 

Y1(t) = YM(t) − E. |r1. YM(t) − Prey(t)|            …… . . (17)       

                                 Y2(t) = YFM(t) − E. |r1. YFM(t) − Prey(t)|           …… . (18)                               

The evasion energy of the prey E is calculated according to equation (4) and finally the equivalence 

of the hyena is updated according to equation (16) and the r1 function in equation (17) and the 

equivalent (18) is the arbitrary progress of behavior in the exploitation phase and the preference for 

exploration and local avoidance is optimal and r1 is calculated according to equation (14) This 

element helps in avoiding local slowdown especially in the conclusion . 
 

Second: Transition from exploration to exploitation 

 In the golden jackal algorithm, the energy escaping from the prey is used to transition from 

exploration to exploitation. The energy of the prey decreases significantly during evasion behavior. 

Considering this prey, the energy evasion model is designed according to the equation The initial 

energy 𝐸0 arbitrarily deviates from (-1 to 1) in each iteration When 𝐸0  decreases from (0 -1) the prey 

is physically diminished Although the value of 𝐸0 increases from (0 to 1) it indicates an improvement 

in the prey's strength The variable evasion strength 𝐸0  decreases during the iteration process When 

E >1, the jackal pairs search in different sections to explore the prey and when E <1, the golden jackal 

attacks the prey and exploitation finally rescues it. The search process in the golden jackal algorithm 

begins by generating a random population of prey. During iterations, the potential location of the 

prey is estimated by hunting a male and female jackal pair. Each candidate in the population updates 

its distance from the jackal pair. The parameter E_1 is reduced from (1.5 to 0) to ensure exploration 

and exploitation, respectively. The golden jackal hunting pair deviates from the prey when E >1 and 

clusters with the prey when E <1. The golden jackal algorithm is completed by meeting the 

termination criterion by returning the pseudocode of the golden jackal algorithm. Figure 1 illustrates 

how the algorithm works in selecting variables. 
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Fig. 1: Variable selection mechanism according to the Golden Aviary algorithm. 

 

Third: Criteria for evaluating penalty methods 

The method of evaluating the performance of penalty methods, comparing these methods among 

themselves, and choosing the best method is an important aspect of data analysis. In general, there 

are two aspects of evaluating the performance of penalty methods: the first is evaluating the accuracy 

of prediction and the second is evaluating the choice of variables 

Fourth: Criteria for evaluating the accuracy of prediction 

First: Estimation Error (EE) 

It is defined as the square of the difference between the value of the actual parameters and the value 

of the estimated parameters and is defined in the following mathematical form 

 

:EE = (β̂ − β)
T
(β̂ − β)                                  … (9) 

Where: :β̂ is the vector of parameters estimated according to the methods used and β is the vector of 

real parameters . 

Second: Prediction Error (PE) 

It is defined as the square of the difference between the true value of the response variable and its 

associated predictive value, and is defined mathematically by the following equation: 

PE = (y − ŷ)T. (y − ŷ)                                     … (10) 

 
Where ŷ = Exp{XTβ}and based on these two criteria the best method is determined which gives the 

lowest value compared to the other methods. 

Fifth: Criteria for evaluating the accuracy of variable selection 

Since the proposed methods in general (I, C) work on selecting variables, it is important to evaluate 

and measure the ability of these methods and their quality in how to select important variables. 

Therefore, two criteria were relied upon in our study for this purpose as follows: 

First: Evaluation Criterion "C" 
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It is the evaluation criterion symbolized by (C) which is defined as the number of real transactions 

with zero values that were correctly estimated as having zero values . 

Second: Evaluation Criterion "I " 

The evaluation criterion symbolized by (I) which is defined as the number of real transactions with 

non-zero values that were incorrectly estimated as having zero values. The quality of penalty methods 

in terms of criteria for evaluating the accuracy of variable selection depends on who gives the highest 

value for (C) and the lowest value for (I) . 
 

4. DESCRIPTION OF THE SIMULATION EXPERIMENT 

The experiment was designed and simulated using the programming language (R) where the variable 

(𝑦𝑖) was generated in the Poisson regression model that follows the Poisson distribution with a rate 

of (𝜇𝑖), where the Monte Carlo method was used in the simulation where the values of the sample 

size (n) were set where three sample sizes were used which are (50, 100, 150) in order to study the 

comparison according to the samples of different types. The comparison will be made with both the 

LASSO method which represents the abbreviation of Least Absolute Shrinkage and Selection 

Operator as well as the SCAD method which represents the abbreviation of Smoothly Clipped 

Absolute Deviation. 

5. SIMULATION STUDIES 

First: The data for the variable y were generated, which follow the Poisson regression model as 

follows: 

y~P(exp (Xβ)) 

Second: The matrix of explanatory variables X was generated with dimensions (n × p) that follow 

the multivariate normal distribution (Multivariate Normal Distribution) as follows : 

           X~MN(μ,M) 

Where M is the covariance matrix, where 𝑀𝑖𝑗 = 𝑟|𝑖−𝑗|, when (i,j=1,2,…,p) where the explanatory 

variables are correlated . 

Third: The experiment was repeated (100) times in order to reduce bias in Monte Carlo experiments  . 

Fourth: The data of the Poisson regression model were generated according to the values of the 

regression parameter vector β, whose dimensions are (1 ×  𝑝). The values of the regression 

parameter vector β were as follows: 𝛽 = (0,… ,0,1.5,−0.4,0.8,−0.6,1.2)𝑇, where the number of 

non-zero parameters is q=5, and the zero parameters are equal to p-q . 

6. INTERPRETATION OF SIMULATION RESULTS 
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The results of the simulation experiment will be analyzed and interpreted according to the criteria of 

prediction accuracy and the criteria of variable selection accuracy. By observing Table (1), (2) and 

(3) which shows the values of the criteria of each of (EE, PE, C, I) for the penalty methods (LASSO, 

SCAD) proposed by researchers Zou (2006), Zou and Hastie (2005), Tibshirani (1996), Fan and Li 

(2001), El-Anbari and Mkhadri (2013) and the proposed method GJO, the following can be 

concluded: 

1- When the correlation coefficient between the variables changes from (0.5) to 0.7, it is clear that 

the (GJO) method gave the lowest values of (EE, PE) as the amount of improvement in prediction 

based on the PE criterion reached 69.36% and 2.3% at (r=0.5) and 63.63% and 2.83% at (r=0.7) 

compared to LASSO) and (SCAD respectively, and the improvement in the estimation error based 

on the criterion (EE) reached By 99.01% and 45.22% at (r=0.5) and 97.66% and 39.34% at (r=0.7) 

compared to (LASSO and SCAD) respectively. 

2- When the correlation coefficient is equal to (0.9), the (GJO) method gave the best results compared 

to other methods, as the prediction improved based on the PE criterion by 52.59% and 7.28% 

compared to (LASSO and SCAD) respectively, and the improvement in the estimation error based 

on the EE criterion reached 94.90% and 78.77% compared to (LASSO and SCAD) respectively. 

3- Depending on the criteria for selecting variables, the (GJO) method had the highest values of (C)) 

which is the number of true coefficients with zero values that were correctly estimated as having zero 

values, and gave the lowest values of (I) which is known as the number of true coefficients with non-

zero values that were incorrectly estimated as having zero values at the values of the correlation 

coefficient (0.5) and 0.7). While the (GJO) method showed a discrepancy in the criteria for selecting 

variables at the value of the correlation coefficient (0.9).  

4- The (LASSO) method appeared as the worst method in estimation because it gives the highest 

values for (PE and EE) and also as the worst method in selecting variables because it tends to select 

unimportant explanatory variables. 

Table (1): Average criteria for evaluating penalty methods when P=10 and n=50 

r Method PE EE C I 

0.5 

LASSO 32.3507 2.1488 1 0 

SCAD 10.1541 0.0387 4 0 

GJO 9.8014 0.0281 5 0 

0.7 
LASSO 29.9037 2.0302 3.5 0 

SCAD 10.7742 0.0783 4 0 
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GJO 10.1074 0.0463 5 0 

0.9 

LASSO 24.1644 1.9384 4 1 

SCAD 12.3546 0.4654 4.5 0 

GJO 11.328 0.2416 5 0 
 

 

 
Table (2): Average criteria for evaluating penalty methods when P=10 and n=100 

 

 
 

 

 

 

 

 

 

 

 
Table (3): Average criteria for evaluating penalty methods when P=10 and n=150 

r Method PE EE C I 

0.5 

LASSO 8.4941 1.7540 4 0 

SCAD 3.8819 0.1872 4 0 

GJO 3.1247 0.1288 4 0 

0.7 

LASSO 7.7433 1.6771 4 0 

SCAD 4.2797 0.4467 4 0 

GJO 3.9825 0.3064 5 0 

0.9 

LASSO 6.2328 1.8516 5 2 

SCAD 4.7625 1.1938 5 2 

GJO 4.2961 1.3040 5 1 

 
7. PRACTICAL PART 

In order to complete the desired benefit of the research, the application was made to the Poisson 

distribution tracking data which was taken from data used by (Liqa Saeed et al., 2011) on chronic 

renal failure disease, where (73) blood samples were collected from people with chronic renal failure 

disease who are treated with continuous hemodialysis, and blood samples were drawn from the group 

of patients before the hemodialysis process which takes (3-4) hours, and the patients' condition was 

diagnosed by specialist doctors in cooperation with Ibn Sina Teaching Hospital - Artificial Kidney 

Unit, their ages ranged between (20-80) years, and included (38) male models and (35) female 

models, and the patients' information was recorded according to a special questionnaire form for each 

patient prepared for this purpose for the year 2013, where the study recorded eight explanatory 

r Method PE EE C I 

0.5 

LASSO 19.3353 2.0341 2 0 

SCAD 6.9986 0.0699 4 0 

GJO 6.6514 0.0432 5 0 

0.7 

LASSO 18.6220 1.8992 3 0 

SCAD 7.5870 0.1520 4 0 

GJO 6.8547 0.0890 5 0 

0.9 

LASSO 14.8017 1.7818 5 1 

SCAD 8.5148 0.6986 5 1 

GJO 7.9514 0.5511 6 1 
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variables which are believed to have an effect on the response variable which represents the number 

of times of hemodialysis per month. Table (4) shows a description of the explanatory variables used 

in the study . 

 

 

Table (4): Description of the independent variables used in the study 

Explanatory variable symbol Explanatory variable description Unit of measure 

X1 Gender (Male = 1, Female = 2) 

X2 Age Years 

X3 Duration of disease Days 

X4 Genetics (Yes = 1, No = 2) 

X5 Urea ratio (mmol/L) 

X6 Total protein ratio g/100ml 

X7 Albumin ratio g/100ml 

X8 Globulin ratio g/100ml 
 

The parameters of the Poisson regression model are estimated by the maximum likelihood estimator 

(MLE) regardless of the estimate of ((𝛽0, then the values of (𝑌̂) are found to calculate the mean square 

error (MSE) of the model. By observing Table (5), which shows the results of the mean square error 

of the estimated model that were obtained, we notice that the (GJO) method is superior to the other 

estimation methods used, as it gave the lowest value for the mean square error, which makes it the 

best estimation method, then the (SCAD) method comes in second place in terms of the value of the 

mean square error, and the (MLE, LASSO) methods were the worst two methods as they gave the 

highest values for the mean square error. 

 

 

Table (5): Results of the methods used based on the MSE criterion In the data of patients with renal failure 

MSE Methods 

9.358487 MLE 

7.877187 LASSO 

5.1036 GJO 

6.9741 SCAD 
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8. CONCLUSIONS  

The simulation and practical application results showed that the GJO method is better than other 

variable selection methods and outperformed them when the correlation between the variables is 

(0.5) and (0.7), as the GJO method had the lowest values of criteria (EE, PE, I) and the highest 

values of (C)) for all simulation models when the correlation coefficient between the variables was 

(0.5) and (0.7). The simulation and practical application results also showed that the LASSO 

method is the worst method, as the LASSO method gave the highest values of criteria (EE, PE, I) 

and the lowest values of (C)) for all models when the correlation coefficient between the variables 

was (0.5) and (0.7) and (0.9). 
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